
SRSSIS: Super-Resolution Screen Space Irradiance
Sampling for Lightweight Collaborative Web3D

Rendering Architecture

Huzhiyuan Long⋆1[0009−0004−9910−7322] ⋆⋆, Yufan Yang⋆1[0009−0006−3919−0376], Chang
Liu2[0000−0002−3047−1597], and Jinyuan Jia1[0000−0002−7772−4766]

1 Tongji University, NO.1239 Siping Road, Shanghai, P.R. China
{huzhiyuan.long,yang_yuyfa}@outlook.com jyjia@tongji.edu.cn

2 Nanchang Hangkong University, No.696, Fenghe South Avenue, Nanchang, China
lcsszz@nchu.edu.cn

Abstract. In traditional collaborative rendering architecture, the front-end com-
putes direct lighting, which imposes certain performance requirements on the
front-end devices. To further reduce the front-end load in complex 3D scenes, we
propose a Super-resolution Screen Space Irradiance Sampling technique(SRSSIS),
which is applied to our designed architecture, a lightweight collaborative render-
ing system built on Web3D. In our system, the back-end samples low-resolution
screen-space irradiance, while the front-end implements our SRSSIS technique
to reconstruct high-resolution and high-quality images. We also introduce frame
interpolation in the architecture to further reduce the backend load and the trans-
mission frequency. Moreover, we propose a self-adaptive sampling strategy to
improve the robustness of super-resolution. Our experiments show that, under
ideal conditions, our reconstruction performance is comparable to DLSS and
FSR real-time super-resolution technology. The bandwidth consumption of our
system ranges from 8% to 66% of pixel streaming at different super-resolution
rates, while the back-end’s computational cost is approximately 33% to 46% of
pixel streaming at different super-resolution rates.

Keywords: Collaborative rendering · Web3D · Super resolution · Distributed
algorithms.

1 Introduction

Accurate lighting models and fast visual feedback are two important factors for real-
time (e.g., greater than 30 frames per second) rendering in computer graphics. With the
development of computer hardware and the widespread use of real-time GI algorithms,
realistic real-time graphics have become possible on high-end platforms. [17].

On the other hand, with the rise of portable devices, users tend to experience 3D
content on thin clients such as smartphones and laptops. Web3D has the advantage of
good cross-platform compatibility, which enables users to access 3D content on the
⋆ both authors contributed equally.

⋆⋆ corresponding author

2 H. Long et al.

web without installing any software or plug-ins, but the disadvantage is limited render-
ing capability. In pure web-based rendering modes, it is difficult to achieve high-quality
real-time graphics on thin clients, which significantly reduces the user’s quality of ex-
perience (QoE) [22].

How to achieve interactive high-quality graphics on thin clients has gradually be-
come a focus of attention in computer graphics research. One possible solution is re-
mote rendering such as Nvidia Geforce-now [19] and PlayStation Now [27], which are
rendering systems centered on cloud servers. Cloud rendering only requires uploading
control instructions and decoding videos on the front-end, which can be done on almost
any low-power device. However, remote rendering also has some drawbacks, such as
high network bandwidth consumption, high server computing power cost and delay
sensitive issues.

Another possible solution is collaborative rendering, which is a rendering system
that distributes rendering tasks between the client and the server. Collaborative render-
ing makes full use of the computing power of the client devices, reducing the traffic
consumption and the server computing cost. However, due to the direct lighting calcu-
lation task on the front-end, the performance requirements are high, while the versatility
is low, especially when facing complex scenes such as multiple light sources.

Cloud baking is a representative technique in collaborative rendering that encodes
the irradiance contribution of indirect lighting of the scene into an irradiance map and
transmits it to client through streaming texture[5, 12, 13, 25]. The client then combines
the indirect irradiance with the direct lighting calculation to produce the final image. To
reduce transmission bandwidth, Shao W et al.[25] proposed updating only the screen
space indirect lighting information each update and updating it to the scene’s irradiance
map.

To reduce the load on the client, we abandoned the data structure that maintains
the indirect lighting of the scene on the client and proposed a collaborative rendering
architecture that utilizes server sampling and client reconstruction. In order to reduce
the computational and transmission costs of the server while making better use of the
client’s computing power, we present an innovative real-time super-resolution technique
for collaborative rendering.

We sample low-resolution screen-space irradiance including direct and indirect illu-
mination at the server, which lacks high-resolution illumination information. Our real-
time super-resolution technique reconstructs high-resolution screen-space irradiance on
low-resolution irradiance using a joint bilateral filter based on screen-space depth and
normal geometry information, which can be obtained at low cost by rasterizing in the
client (compared to illumination information). In addition, we exploit the temporal con-
tinuity of screen-space irradiance and further reduce both server load and transmission
frequency by interpolating irradiance between frames. Finally, the reconstructed irradi-
ance is mixed with albedo to achieve high-quality real-time rendering.

Our technique has several advantages over existing methods. It saves more band-
width and server cost compared to cloud-centric systems represented by pixel stream-
ing, which require transmitting high-resolution video frames to the client device. And
it reduces client performance requirements compared to traditional collaborative ren-

SRSSIS Collaborative Rendering Architecture 3

dering systems, which require calculating direct lighting on the client device. Our main
contributions compared to previous work are:

1. A collaborative rendering architecture that is interactive, low-latency, and low-
cost.

2. The first use of joint/cross bilateral filter for super-resolution in real-time render-
ing.

3. A proposed Self-adaptive detection filter to assist sampling.
4. A mapping rule for irradiance intensity that is suitable for this architecture.

2 Related Work

(a) Cloud-centric rendering architecture (b) Cloud-end collaborative rendering architecture

Fig. 1: A comparison of architectures between different rendering systems

2.1 Collaborative Rendering

Real-time rendering tasks are divided between the front-end and back-end, and the re-
sults are mixed and output to the screen. The mainstream technique of collaborative
rendering separates direct and indirect lighting. The front-end is responsible for direct
lighting calculations, and the back-end is responsible for indirect lighting calculations.
Finally, the lighting is blended and output[5].

Regarding the computation of indirect lighting, there are mainly the following meth-
ods:

Irradiance Map: The entire visible surface of the scene is encoded onto a texture
map, and the back-end computes the irradiance of the indirect lighting in real-time and
transmits the updated irradiance map to the front-end. The front-end mixes it with the
direct lighting it has calculated and outputs the final image[5]. There are also optimiza-
tion measures such as light map trees[12, 13, 25].

Photon Tracing: The back-end computes indirect lighting using photon tracing,
updates the front-end’s photon information, and calculates the intensity of the indirect
lighting using photon density, mixing it with the direct lighting and outputting it to the
screen[3, 5].

Voxel & VPL:A sparse voxel octree is used to build voxelized indirect light sources,
and the front-end synchronizes this data structure and mixes it with direct lighting to
output the frame[5].After voxelization, VPL can also be generated as an indirect light-
ing representation technique and synchronized with the front-end[14].

4 H. Long et al.

Light Probe: Indirect lighting information is stored in light probes, and selective
synchronization of light probes is used to transmit lighting information to the front-end,
thereby achieving global illumination[28].

Shading Atlas Streaming: All visible object surfaces are shading, encoded onto an
atlas texture, and uploaded. The front-end receives the texture and directly obtains the
output frame through rasterization[8, 9, 16].

Collaborative rendering fully utilizes the computational power of the front-end.
However, there are still some shortcomings:

a. The data structures for maintaining indirect lighting are all proportional to the
size of the scene (in order to have high-quality lighting effects at any position in the
scene), but for large-scale scenes, the memory consumed by this data structure will be
huge, which is still a challenge for portable front-end devices.

b. Limited support for complex scenes. Some front-end devices with low graphics
memory bandwidth are unable to support deferred rendering [10], and the forward ren-
dering pipeline is difficult to render dynamic multi-light source scenes. In this case, the
front-end is unable to handle the rendering task of direct lighting.

2.2 Cloud Rendering

A remote interactive 3D system based on pixel streaming, where the front-end handles
input and uploading instructions, while the back-end receives instructions, processes
game logic, renders and encodes frames, and uploads them. Finally, the front-end de-
codes and displays the frames[11, 21, 26]. Cloud-based gaming solutions rely heavily
on back-end computing power and network bandwidth, resulting in high costs. To re-
duce back-end computation loads and frame transmission costs, alternative methods are
needed.

2.3 Real Time Super Resolution

The earliest widely used technique for doubling resolution was Checker Board Render-
ing (CBR), which relied primarily on reusing temporal information[15, 31]. In recent
years, real-time super-sampling has been represented by AMD FSR (FidelityFX Super
Resolution)[1] and Nvidia DLSS (Deep Learning Super Sampling)[20]. These tech-
niques use low-resolution images and common rendering engine data, such as depth
and motion vectors, as input, and output high-resolution images in real-time.

Neural network-based real-time super-sampling techniques have also emerged in
recent years[4, 32–34]. These techniques mainly use CNN or DNN networks to achieve
super-resolution effects. For real-time rendering, render time per frame is proportional
to the number of pixels in that frame. For rendering complex scenes, it is more efficient
to render at lower resolutions and then run a neural network than to render at native res-
olution. However, for thin clients, simple filtering may be faster than neural networks,
and filters are more interpretable than neural networks. On the other hand, filters have
scalability. For example, it is difficult to apply the same well-trained network to adapt
to any situation for different FOV changes between the server and the client.

SRSSIS Collaborative Rendering Architecture 5

2.4 Irradiance Super Sampling Filter

How to efficiently reconstruct signals in real-time with limited sampling information in
low sample-per-pixel (SPP) Monte Carlo simulations is a challenging problem. Classic
methods mainly rely on edge-aware filtering and joint bilateral filtering based on scene
geometry information, with some improvements to achieve good denoising results[2, 6].
Further reuse of temporal information has achieved acceptable results at 1 SPP[23, 24].

Unlike traditional irradiance super-sampling techniques used for denoising, the ir-
radiance obtained by the back-end computation in our system is an accurate and trust-
worthy value that does not require denoising. Instead, filters are used to cost-effectively
super-resolve lighting information.

3 System Design

Fig. 2: The architecture of our system

Section 3.1 We describe the overall workflow of our system from a high-level per-
spective. Section 3.2 We present an approximate estimation technique for irradiance
under our framework. Section 3.3, Section 3.4 and Section 3.5 describe the super-
resolution technique we use. Section 3.6 We give the mapping rules for irradiance dur-
ing transmission. Section 3.7 We introduce the synchronization method between the
front-end and the back-end in our system. Section 3.8 We provide the technical details
of the post-processing techniques applied in our system.

3.1 Overview of System Architecture

Our system consists of four main parts in chronological order:
1. Input and upload of instructions.
2. Rendering of the back-end scene and computation of the low-resolution G-buffer

on the front-end.
3. Computation of irradiance, streaming, and super-resolution on the back-end and

front-end.
4. Reconstruction of the image.
Figure 2 illustrates the overall pipeline of the front-end and back-end in detail.

6 H. Long et al.

Fig. 3: Data flow diagram of our system

The front-end has two independent rendering pipelines, one for computing the G-
buffer information of each pixel under the server-sampled viewpoint, and the other for
performing super-resolution and reconstruction of the front-end irradiance.

For the computation of the G-buffer, we need to rasterize the scene under the pre-
defined camera parameters (resolution, FOV, etc.) agreed upon by the front-end and
back-end, and obtain the depth buffer in view space and normal buffer in world space.
To render the frames, the front-end needs to take the sampled screen-space irradiance,
the corresponding G-buffer, and camera information as inputs to produce the result.

The rendering pipeline of the client consists of three passes.
Decode Pixel Streaming. Decode the H.264 encoded pixel streaming and obtain the

R8G8B8 format compressed values. Then map them to float points using Equation (9).
Super-resolution Irradiance. Bind the low-resolution G-buffer to the decoded ir-

radiance and take the current frame’s G-buffer as input. Compute the irradiance of each
pixel by convolving on the irradiance with a joint bilateral filter.

Blend Color Output. Output blended colors by interpolating high-resolution irra-
diance between two sampled frames if frame interpolation is enabled, and then blending
irradiance with albedo.

3.2 Compute Irradiance

According to the rendering equation, the radiance from one point can be represented as:

Lo(p,ωo) = Le(p,ωo)+
∫

Ω
fr(p,ωi,ωo)Li(p,ωi)(ωi ·n)dωi (1)

where Lo is the radiance from point p in the direction ωo, Le is the emitted radiance,
fr is the BRDF, Li is the incident radiance, and Ω is the hemisphere of possible incident
directions.

Assuming that all objects in the scene are diffuse materials, as the BRDF is inde-
pendent of direction, the radiance can be expressed as:

Lo(p,ωo) = Le(p,ωo)+ c(p)
∫

Ω
Li(p,ωi)(ωi ·n)dωi (2)

SRSSIS Collaborative Rendering Architecture 7

where c is the albedo of the material.
Considering the spatial locality, the incident radiance distribution of adjacent pixels

is similar, and irradiance can be used to represent its integral to have a good estimate of
radiance:

Lo(p,ωo) = Le(p,ωo)+ c(p)I(p) (3)

where I is the irradiance at point p.
In practice, render a low-resolution frame without post-processing from the server

as radiance input, and calculate the corresponding estimated irradiance:

irradianceestimated =
(radiance− emissive)

albedo
(4)

3.3 Super Resolution Irradiance

Algorithm 1: Super-resolution irradiance. The subscript i indicates that the variable
is related to the inner filter kernel, while the subscript o indicates that the variable is
related to the outer filter kernel.

Input : position in current screen pos
Output: Irradiance

1 Ii, I0← 0
2 Wi,W0← 0
3 p← reproject(pos)

// Initialization.
4 for i in windowi(p) do

// Compute with inner filter.
5 Wi←Wi +Wf (s)∗WEs(s) // Add filter weight multiplied by

Edge-stop weight.
6 Ii← Ii +Wf (s)∗WEs(s)∗ I(s) // Add weighted irradiance.
7 end
8 for i in windowo(p) do

// Compute with outer filter.
9 Wo←Wo +Wf (s)∗WEs(s)

10 Io← Io +Wo(s)∗WEs(s)∗ I(s)
11 end
12 if Wo >Wi then

// Decide whether to discard the irradiance sampled through the
outer filter.

13 I← Ii + I0
14 W ←Wi +W0

15 else
16 I← Ii
17 W ←Wi

18 end
19 return I/W

8 H. Long et al.

Screen-space irradiance is employed as a medium for transferring lighting informa-
tion due to the following advantages:

1. The amount of data transferred only depends on the screen resolution and the
super-resolution scaling factor, and there is negligible memory overhead for rendering
large-scale 3D scenes.

2. the proportion of low-frequency components in irradiance is higher than that in
radiance, making it more likely to approach accurate values after joint bilateral filter
super-resolution.

To obtain the irradiance of each pixel on the front-end image, the point needs to
be first reprojected back to the screen space under the sampling viewpoint, followed by
estimating its irradiance using a depth and normal-based joint bilateral filter on the sam-
pled irradiance. Unlike the problems faced by MC ray tracing denoising, our method
has noise-free irradiance and G-buffer, and good irradiance estimation can be expected
with small filters. The pseudocode is described in Algorithm 1

Reprojection mainly relies on motion vectors [18, 29] in screen space, which can
obtain the previous location of the current point.

Our implemented irradiance estimation method mainly refers to the idea in [6]:

irradiance =
∑s∈Wp f (s, p)∗w(s, p)∗ I(s)

∑s∈Wp f (s, p)∗w(s, p)
(5)

Where s is the sampling point, p is the shading point. Wp is the sampling point set
covered by the filter kernel centered on the reprojected shading point p. f is the weight
assigned by the filter. w is the weight calculated based on Depth and Normal Amplified
Edge-stopping function. I is the irradiance of the sampling point.

The formula describes the weighted average sum of the irradiance of sample points
near the shading point, with the weight related to the distance between the sample point
and the shading point in screen space and whether the two points seem to be on the
same plane.

3.4 Self-adaptive Detection Filter

Fig. 4: The application of kernel filter in 2x2 super resolution

Self-adaptive detection filter addresses the issue of low weight sum and low sam-
pling density near the shading point by attempting to sample at a further distance, which

SRSSIS Collaborative Rendering Architecture 9

further mitigates shading errors that may occur due to sudden appearance of new mesh
surfaces and enhances the robustness of the system.

The shape and weight of the filter kernel are illustrated in Figure 4. The filter kernel
consists of two parts, an intrinsic inner layer filter and an adaptive outer layer filter. In
most cases, the inner filter is sufficient for accurately estimating irradiance. However, if
new regions appear in the view due to camera or object motion, i.e., mesh surfaces that
were not sampled under the sampling viewpoint, a wider range of samples is required to
estimate accurate irradiance. Thus, an adaptive outer filter is designed for this purpose.

In the experiment, an outer filter with a Manhattan distance of 32 from the center
is employed for sampling, which should be adjusted appropriately based on the actual
magnification ratio and screen resolution.

3.5 Depth and Normal Amplified Edge-stopping Function

The Depth and Normal Amplified Edge-stopping function utilizes the idea presented
in [23], which use depth and normal differences to indicate the similarity in irradiance
between sampling points and shading points. By comparing the difference in depth
and normal, it is possible to infer whether two points are on the same plane, and then
determine the relevance of sampling point irradiance for shading point irradiance.

W (s, p) =Wn(s, p)∗Wd(s, p) (6)

Normal difference. Normal difference is intuitive. If there is a large world normal dif-
ference between two points, it implies that they are likely to belong to different planes
and have different irradiance, that is, the sampling point cannot offer guidance for the
irradiance value of the shading point.

Wn(s, p) = max(0.0001,dot(ns,np)
32) (7)

Where ns is the normal of the sampling point, np is the normal of the shading point.
Depth difference. The effect of normal on depth difference needs to be considered.

The formula evaluates the world normal and the vector from the camera to the point
to assess the depth difference. When the plane containing the shading point faces the
camera, the points on that plane have nearly identical depth; when that plane does not
face the camera, even if they are on that plane, their depth values may vary significantly.
Therefore, an adaptive strategy is adopted based on the degree of normal difference,
where the deeper the angle between the normal and the camera vector of the sampling
point, the less impact the depth difference has on the weighting.

Wd(s, p) = exp(−
|ds−dp|

0.1+0.2∗ cos−1(dot(np,v))
) (8)

Where np is the normal of the shading point, v is the vector from the camera to the
shading point. ds is the depth of the sampling point, dp is the depth of the shading point.

In summary, our super-resolution technique amounts to performing a convolution
once every time shading after rasterization. This is acceptable for most thin clients.

10 H. Long et al.

3.6 Self-adaptive Irradiance Mapping

The radiance output from the native rendering pipeline ranges from 0 to 1, while the
albedo ranges from 0 to 1; thus, it can be inferred that the data range of irradiance is
[0, +∞). However, for most cases, the range of irradiance values remains at a low level.
Therefore, a mapping is needed that uses more information to store low-value informa-
tion and less information to store high-value information. We propose an exponential-
based mapping to represent the decoding mapping from compressed values to uncom-
pressed values:

irradiance = a∗ (b255∗irradiancecompressed −1)/255 (9)

Where irradiancecompressed is the compressed irradiance value ranged from 0 to 1,
irradiance is the irradiance computed from Equation (4). a,b are constants calculated
from Equation (10)

The encoding mapping is the inverse mapping of the above equation. If the mapped
irradiance is greater than 1, it is truncated to 1. To calculate the values of a and b, the
maximum value of irradiance estimation irradiancemaxneeds to be set a priori, and it is
assumed that the mapping in Equation (9) has a gradient of 1 when irradiancecompressed→
0. From this, a system of equations can be derived:{

a∗ (b255−1) = irradiancemax

alnb = 1
(10)

3.7 Synchronization

Fig. 5: an ideal process with little network latency

As shown in Figure 5, at the beginning of each frame, the client first uploads
user input and starts computing the server-side G-buffer. Once the input is received,
the backend begins rendering the scene to obtain radiance, estimates irradiance using
Equation (4), and then encodes and transmits it. At this point, the front-end obtains the
screen-space irradiance and decodes it, and uses the result as input to render the scene.

SRSSIS Collaborative Rendering Architecture 11

Fig. 6: A synchronizing approach with interpolation

To reduce the bandwidth and computation cost, we propose a synchronization method
as shown in Figure 6. Specifically, we delay the use of lighting information and interpo-
late between irradiance estimates to supplement intermediate frames. Considering the
thin client scenario, our method uses linear interpolation to estimate the irradiance. The
specific method is as follows:

a = min(t
′
/∆ ,1) (11)

irradiance = (1−a)∗ irradiance
′′
+a∗ irradiance

′
(12)

Where irradiance′, irradiance′′ are the estimated values of irradiance for the first
closest sampling and the second closest sampling respectively. ∆ is the time interval of
sampling. t ′ is the time difference between the current frame and the closest sampled
frame. α is the blend ratio in Figure 3.

We use the current rendering frame and the time t’ when we obtained the latest
sampling information as parameters. t’ is used to adjust the ratio of the irradiance esti-
mation values of the second-last and the first-last frames. This results in effective linear
interpolation of lighting at the pixel level.

In Figure 6, RTT is mainly determined by the video stream transmission delay. The
total latency can be estimated as:

Latency = ∆ +RT T (13)

3.8 Post-Processing

As the backend is responsible for sampling the illumination information, it needs the
radiance in linear space before anti-aliasing and other post-processing effects to com-
pute the irradiance. Conversely, various post-processing effects need to be performed
after super resolution on the front-end.

For anti-aliasing, our architecture supports MSAA, which is a widely used anti-
aliasing technique that can be used in forward rendering pipeline. This is usually the
only pipeline that some thin clients such as mobile devices can afford.

Post-processing effects such as anti-aliasing need to be completed on the client.

12 H. Long et al.

4 Results and Discussion

Our approach is implemented using three.js, which is based on WebGL, for the client
and UE5.0 for the backend. All front-end tests are conducted on Edge browser with
a GeForce RTX 3070 Laptop GPU and a AMD Radeon 780M(an integrated graphics
card of AMD). Our evaluation criteria include reconstruction quality, reconstruction
time, network bandwidth consumption and computational performance.

4.1 Super Resolution Performance

Scene
Polygon count

Room
74.4K

Sponza
262K

Billiards room
1.00M

Magnification 2.0 3.0 4.0 6.0 2.0 3.0 4.0 6.0 2.0 3.0 4.0 6.0

Ours 31.84/86.08 29.93/82.40 28.67/80.25 27.17/77.59 31.91/92.05 30.14/89.46 28.75/87.35 27.36/84.73 33.87/93.87 32.34/92.42 31.40/91.47 29.92/89.89

DLSS3 30.90/94.31 30.90/94.31 N/A N/A 31.26/93.93 31.25/93.92 N/A N/A 32.39/97.11 32.22/97.11 N/A N/A

FSR2 29.92/91.50 28.80/87.66 N/A N/A 29.86/90.83 28.32/84.51 N/A N/A 32.78/95.41 30.26/90.99 N/A N/A

Table 1: Super resolution ratio and reconstruction quality(PSNR/SSIM) in each test scenario

The proposed technique is compared with the real-time super-resolution techniques
DLSS3 and FSR2 in terms of image super-resolution quality. Visual results and quanti-
tative evaluation metrics PSNR and SSIM are provided[30].

In the test scenarios, the front-end and the back-end use the same FOV. The camera
orientation of the back-end is also the same as that of the front-end, which maximizes
the use of the sampling information from the back-end.

The DLSS and FSR techniques are implemented using UE5.0 plugins in the exper-
iments. All plugin-related parameters are set to default, and the images are generated
through Movie Render Queue.

The reference images are generated with MSAAx8 anti-aliasing, and using Movie
Render Queue as well. Three scenarios are used for testing: Room, Sponza and Billiards
room, with increasing complexity. Since the front-end needs to rasterize the scene, the
rasterization speed is affected by the scene size, so the super-resolution time consump-
tion of the three scenes is also different.

According to the experimental results (Figure 7), at the same magnification ratio,
our method has clearer details at the model and texture details. This is because our
method has high-resolution physical information as guidance, which makes it easier to
reconstruct more accurate image compared to other methods.

Due to the difference of their processing of model materials may be different. In
terms of results, three.js renders more obvious texture details (such as the ceiling in
Room scene in Figure 7), which reduces our SSIM index.

Since we use a convolution-based super-resolution method, our method has a native
denoising function. For example, in Figure 7, the noise at the shadow edge on the table
in billiards room is caused by the hardware real-time ray tracing of soft shadows in UE.
DLSS and FSR cannot handle this kind of noise well, but our method has a better result.

SRSSIS Collaborative Rendering Architecture 13

R
oo

m
2x

2
R

oo
m

3x
3

Sp
on

za
2x

2
Sp

on
za

3x
3

B
ill

ia
rd

s
ro

om
2x

2
B

ill
ia

rd
s

ro
om

3x
3

our result
our input bicubic DLSS FSR our result reference

Fig. 7: Visual result of test scenes

14 H. Long et al.

Transformation Move 1m laterally Move 1m backward Rotate 15◦ Rotate 20◦

Enable 25.54 26.88 26.06 26.28
Disable 20.99 24.21 25.98 25.97

Table 2: The performance(PSNR) of outer filter is evaluated in the Sponza scene, which has a
size of 29.8 m in length and 18.3 m in width. The scene is rendered with FOV of 90 degrees in
600x600 sample resolution and FOV of 60 degrees in 1200x1200 present resolution.

In Table 2, we test the PSNR under different viewpoint transformations. For the
translation case, the improvement of PSNR by our designed self-adaptive detection
filter is significant.

(a) Disable outer filter (b) Enable outer filter (c) Reference

Fig. 8: Comparison of the performance of the outer filter while moving 1m laterally

In Figure 8, for the shading points that appear due to viewpoint transformation, a
better estimation of irradiance can be obtained by expanding the sampling, thereby im-
proving the rendering quality. For the rotating case, on the one hand, the image quality
is not low without the outer filter; on the other hand, when a large area of unsampled
mesh appears, it is impossible to complete the rendering based solely on screen space
information. Even with the outer filter enabled, the improvement of the image is not
significant.

Scene Room Sponza Billiards room
Ours on 780M 1.60 2.07 3.86

Ours on 3070 laptop 0.538 0.754 1.06
Cloud baking on 3070 laptop[25] / 2.05 /

Table 3: Time consumption(ms) in test scenarios(for 1200x1200 present resolution), which in-
cludes rasterization pipeline

We compared the front-end running efficiency of our technique with the implemen-
tation of [25]. Since the number of light sources affects the front-end efficiency of the
traditional collaborative rendering architecture, we only tested with the addition of one
light source in the scene implemented by [25]. Obviously, the front-end efficiency of

SRSSIS Collaborative Rendering Architecture 15

our system is much higher than that of the traditional collaborative rendering system,
which is friendly to thin clients.

Fig. 9: Error plot between 6x6 super resolution result and a reference image in Sponza. The errors
in the image are mainly concentrated on the edges of objects and shadows, which are caused by
low sampling frequency. The aliasing of the latter can be improved by changing the sampling
method when using irradiance as a texture in the front end (such as bilinear interpolation), but
this may increase the overall error of the image.

Figure 9 shows the error plot of our technique at a 6x6 magnification ratio compared
to the reference. It gives the sum of absolute values of RGB differences for each pixel.
The differences are mainly concentrated at the edges of objects and shadows, both of
which are caused by low irradiance sampling frequency.

4.2 Server Load

interpolation magnification reference x2.0 x3.0 x4.0 x6.0
disable(60fps) 5.2078 3.8631 1.7838 1.1022 0.5777
enable(15fps) 1.4583 0.9346 0.4364 0.2663 0.1418

Table 4: Consumed network bandwidth(MB/s) across various Magnification

We conducted tests using UE’s pixel streaming with H.264 encoder. We transmitted
a 60fps, native resolution pixel stream as the reference. The present resolution used
in the front-end is 1200x1200. For magnification ratios of x2.0, x3.0, and x4.0, the
corresponding pixel streaming resolutions are 600x600, 400x400, and 300x300. For
the case of 60fps in the front-end, we test with inserting 3 frames between every two
frames.

In the case of only enabling 2x2 super-resolution, the pixel count is 1/4 of the
present resolution, and the network bandwidth consumption is about 66% of the origi-
nal.

The back-end testing uses UE5.0 with lumen enabled on a GeForce RTX 3060 Lap-
top GPU. In the test scenario, GPU time is the bottleneck of computing power. For

16 H. Long et al.

Scene Room Sponza Billiards room
Reference 21.99/21.54 41.13/40.82 34.52/34.22

2x2 8.06/7.74 20.95/20.77 12.90/12.73
3x3 6.44/6.11 17.58/17.43 9.91/9.77
4x4 6.24/5.7 15.75/15.61 9.15/9.02
Table 5: Frame time(ms) and total GPU time(ms) in test scenes

higher magnification ratios, the increase in time consumption is less significant, which
may be determined by the parts other than shading in the rendering pipeline.

4.3 Limitation and Future Work

Compared to cloud rendering architectures, our architecture has the same drawback as
traditional collaborative rendering architectures, which is that they both require com-
plete geometric information on the client. This means that the necessary geometric in-
formation needs to be deployed on the client in advance before providing interactive 3D
services. However, since our system is web-based, it can conveniently load resources
on the web page, which alleviates this disadvantage to some extent.

In terms of latency, according to Equation (13), the latency of our system is mainly
determined by the sampling interval and the pixel streaming latency. If frame interpo-
lation is enabled and a higher number of interpolated frames is used, it will not only
reduce the image quality, but also introduce further latency. However, it may be solved
by extrapolating screen space irradiance via Extranet [7].

(a) (b)

Fig. 10: Artifacts caused by exceeding the mapping range of the irradiance mapping function.
In certain areas of the cloth, the G-channel of irradiance experiences energy loss. Generated with
2x2 super-resolution. (a) Artifacts caused by truncated irradiance.(b) Reference.

In terms of image reconstruction quality, although our reconstruction quality is com-
parable to DLSS and FSR under ideal situations, our super-resolution technique cannot

SRSSIS Collaborative Rendering Architecture 17

replace these real-time super-resolution techniques effectively. If sampling and super-
resolution are performed on the same client, an additional high-resolution G-buffer cal-
culation and subsequent interpolation need to be inserted into the original complete ren-
dering pipeline, which is unacceptable in terms of performance. Therefore, our super-
resolution technique may only have practical value in collaborative rendering architec-
tures. In addition, our algorithm is hardware platform-independent like FSR, which is
friendly to various thin clients.

For regions where the irradiance value is higher than the irradiancemax set in Equa-
tion (10),as shown in Figure 10, this will result in energy loss. Conversely, if the map-
ping range of irradiance mapping is too large, this will reduce its representation accu-
racy and lower the overall image quality.

For errors caused by high-frequency changes of irradiance at shadow edges or ob-
ject edges, edge sharpening algorithms can be used to sharpen the edges, which may
improve the errors that appear in Figure 10.

When a large area of unsampled situation occurs (such as fast movement or rotation
of the camera), our method may perform poorly. This is the limitation of only having
screen space information in the front-end under high-latency lighting. The following
solutions can be considered:

1. Use a larger FOV when sampling irradiance to obtain wide-angle information.
2. The interaction latency of the client can be increased so that it is synchronized

with the pixel stream, to avoid unsampled mesh surfaces appearing in the field of view.
3. Similar to collaborative rendering methods based on shading atlas streaming [8,

9, 16]that also only maintain screen space information in the front-end, we can add
more sampling viewpoints to improve the robustness of sampling by using a similar
idea to [9].

5 Conclusion

Collaborative rendering is a way to solve the high service cost of remote rendering and
provide interactive high-quality 3D applications services. The Web3D solution makes
this technique more user-friendly, which means that users can enjoy high-quality, low-
service-cost 3D content brought by SRSSIS architecture without the need of a client,
using only a browser. Our system further improves the traditional cloud baking archi-
tecture, playing to its strengths, and avoiding its weaknesses, and further reduces the
front-end load, making it more available on thin clients.

In addition, we introduce the traditional technique in MC ray tracing denoising
to solve the real-time super-resolution problem. Based on high interpretability, it also
shows good performance in practice, which is a valuable exploration.

Acknowledgements

This research is partially supported by the Basic Grant of Natural Science Foundation
of China (No.62072339), the Key Project of Regional Joint Grant of Science Natural
Foundation of China (No.U19A2063) and a grant from the National Natural Science
Foundation of China (No.62262043).

Bibliography

[1] AMD: Amd fidelityFX super resolution. Website (2023), https://www.amd.com/
en/technologies/fidelityfx-super-resolution

[2] Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive
high-quality global illumination. In: Computer Graphics Forum. vol. 30, pp.
1361–1368. Wiley Online Library (2011)

[3] Bugeja, K., Debattista, K., Spina, S.: An asynchronous method for cloud-based
rendering. The Visual Computer 35, 1827–1840 (2019)

[4] Caballero, J., Ledig, C., Aitken, A., Acosta, A., Totz, J., Wang, Z., Shi, W.: Real-
time video super-resolution with spatio-temporal networks and motion compen-
sation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4778–4787 (2017)

[5] Crassin, C., Luebke, D., Mara, M., McGuire, M., Oster, B., Shirley, P., Wyman,
P.P.S.C.: Cloudlight: A system for amortizing indirect lighting in real-time render-
ing. Journal of Computer Graphics Techniques Vol 4(4), 1–27 (2015)

[6] Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.: Edge-avoiding a-trous wavelet
transform for fast global illumination filtering. In: Proceedings of the Conference
on High Performance Graphics. pp. 67–75 (2010)

[7] Guo, J., Fu, X., Lin, L., Ma, H., Guo, Y., Liu, S., Yan, L.Q.: Extranet: Real-time
extrapolated rendering for low-latency temporal supersampling. ACM Transac-
tions on Graphics (TOG) 40(6), 1–16 (2021)

[8] Hladky, J., Seidel, H.P., Steinberger, M.: Tessellated shading streaming. In: Com-
puter Graphics Forum. vol. 38, pp. 171–182. Wiley Online Library (2019)

[9] Hladky, J., Stengel, M., Vining, N., Kerbl, B., Seidel, H.P.: Quadstream: A quad-
based scene streaming architecture for novel viewpoint reconstruction. ACM
Transactions on Graphics (TOG) p. C32 (2022)

[10] Kaplanyan, A.: Cryengine 3: Reaching the speed of light. Talk, SIGGRAPH
(2010)

[11] Laghari, A.A., He, H., Memon, K.A., Laghari, R.A., Halepoto, I.A., Khan, A.:
Quality of experience (qoe) in cloud gaming models: A review. multiagent and
grid systems 15(3), 289–304 (2019)

[12] Liu, C., Ooi, W.T., Jia, J., Zhao, L.: Cloud baking: Collaborative scene illumina-
tion for dynamic web3d scenes. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 14(3s), 1–20 (2018)

https://www.amd.com/en/technologies/fidelityfx-super-resolution
https://www.amd.com/en/technologies/fidelityfx-super-resolution

SRSSIS Collaborative Rendering Architecture 19

[13] Liu, C., Song, H., Fang, T., Ou, Q., Yu, G., You, T., Ying, M., et al.: Web-cloud
collaborative mobile online 3d rendering system. Security and Communication
Networks 2022 (2022)

[14] Magro, M., Bugeja, K., Spina, S., Debattista, K.: Cloud-based dynamic gi for
shared vr experiences. IEEE Computer Graphics and Applications 40(5), 10–25
(2020)

[15] Mansouri, J.E.E.: Rendering ’rainbow six | siege’. Website (2016), https://www.
gdcvault.com/play/1022990/Rendering-Rainbow-Six-SiegeGDC,

[16] Mueller, J.H., Voglreiter, P., Dokter, M., Neff, T., Makar, M., Steinberger, M.,
Schmalstieg, D.: Shading atlas streaming. ACM Transactions on Graphics (TOG)
37(6), 1–16 (2018)

[17] Myszkowski, K., Tawara, T., Akamine, H., Seidel, H.P.: Perception-guided global
illumination solution for animation rendering. In: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. pp. 221–230 (2001)

[18] Nehab, D., Sander, P.V., Lawrence, J., Tatarchuk, N., Isidoro, J.R.: Accelerat-
ing real-time shading with reverse reprojection caching. In: Graphics hardware.
vol. 41, pp. 61–62 (2007)

[19] NVIDIA: GeForce NOW. Website (2023), https://www.nvidia.com/en-us/
geforce-now/

[20] NVIDIA: NVIDIA DLSS. Website (2023), https://www.nvidia.com/en-us/
geforce/technologies/dlss/

[21] Peñaherrera-Pulla, O.S., Baena, C., Fortes, S., Baena, E., Barco, R.: Measuring
key quality indicators in cloud gaming: Framework and assessment over wireless
networks. Sensors 21(4), 1387 (2021)

[22] Perkis, A., Timmerer, C., Baraković, S., Barakovic, J., Bech, S., Bosse, S., Botev,
J., Brunnström, K., da Silva Cruz, L.A., Moor, K.D., de Polo Saibanti, A., Durnez,
W., Egger-Lampl, S., Engelke, U., Falk, T.H., Hameed, A., Hines, A., Kojić,
T., Kukolj, D., Liotou, E., Milovanovic, D., Möller, S., Murray, N., Naderi, B.,
Pereira, M., Perry, S.W., Pinheiro, A.M.G., Palacios, A.P., Raake, A., Agrawal,
S., Reiter, U., Rodrigues, R., Schatz, R., Schelkens, P., Schmidt, S., Sabet, S.S.,
Singla, A., Skorin-Kapov, L., Suznjevic, M., Uhrig, S., Vlahovic, S., Voigt-
Antons, J.N., Zadtootaghaj, S.: Qualinet white paper on definitions of immersive
media experience (imex). ArXiv abs/2007.07032 (2020)

[23] Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya, C.R.A., Burgess, J.,
Liu, S., Dachsbacher, C., Lefohn, A., Salvi, M.: Spatiotemporal variance-guided
filtering: real-time reconstruction for path-traced global illumination. In: Proceed-
ings of High Performance Graphics, pp. 1–12 (2017)

https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC
https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce/technologies/dlss/
https://www.nvidia.com/en-us/geforce/technologies/dlss/

20 H. Long et al.

[24] Schied, C., Peters, C., Dachsbacher, C.: Gradient estimation for real-time adaptive
temporal filtering. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1(2), 1–16 (2018)

[25] Shao, W., Liu, C., Jia, J.: Lightmap-based gi collaborative rendering system for
web3d application. Journal of System Simulation 32(4), 649 (2020)

[26] Shea, R., Liu, J., Ngai, E.C.H., Cui, Y.: Cloud gaming: architecture and perfor-
mance. IEEE network 27(4), 16–21 (2013)

[27] SONY: PlayStation Now. Website (2023), https://www.playstation.com/en-us/
ps-now/

[28] Stengel, M., Majercik, Z., Boudaoud, B., McGuire, M.: A distributed, decoupled
system for losslessly streaming dynamic light probes to thin clients. In: Proceed-
ings of the 12th ACM Multimedia Systems Conference. pp. 159–172 (2021)

[29] Walter, B., Drettakis, G., Parker, S.: Interactive rendering using the render cache.
In: Rendering Techniques’ 99: Proceedings of the Eurographics Workshop in
Granada, Spain, June 21–23, 1999 10. pp. 19–30. Springer (1999)

[30] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image process-
ing 13(4), 600–612 (2004)

[31] Wihlidal, G.: 4k checkerboard in ’battlefield 1’ and ’mass effect an-
dromeda’. Website (2017), https://www.gdcvault.com/play/1022990/
Rendering-Rainbow-Six-SiegeGDC

[32] Xiao, L., Nouri, S., Chapman, M., Fix, A., Lanman, D., Kaplanyan, A.: Neu-
ral supersampling for real-time rendering. ACM Transactions on Graphics (TOG)
39(4), 142–1 (2020)

[33] Zhan, Z., Gong, Y., Zhao, P., Yuan, G., Niu, W., Wu, Y., Zhang, T., Jayaweera, M.,
Kaeli, D., Ren, B., et al.: Achieving on-mobile real-time super-resolution with
neural architecture and pruning search. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 4821–4831 (2021)

[34] Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time
super resolution on mobile devices. In: Proceedings of the 29th ACM International
Conference on Multimedia. pp. 4034–4043 (2021)

https://www.playstation.com/en-us/ps-now/
https://www.playstation.com/en-us/ps-now/
https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC
https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC

	SRSSIS: Super-Resolution Screen Space Irradiance Sampling for Lightweight Collaborative Web3D Rendering Architecture

